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An algorithm is described for determining macromolecular envelopes from

crystal diffraction amplitudes measured from a solvent contrast variation series.

The method uses solvent contrast variation data that have been preprocessed to

represent the structure-factor amplitudes of the envelope. The amplitudes are

phased using an iterative projection algorithm that incorporates connectivity

and compactness constraints on the envelope. The algorithm is tested by

simulation on two protein envelopes and shown to be effective even in the

absence of the very low resolution data, which are difficult to access

experimentally.

1. Introduction

Despite recent advances, determination of the structures of

large and complex macromolecular structures from crystal

X-ray diffraction data can sometimes be problematic, as a

result of the experimental difficulties of obtaining sufficiently

accurate initial phase information. Solvent flattening, histo-

gram matching and noncrystallographic symmetry averaging

can be helpful in such cases (Kleywegt & Read, 1997; Podjarny

et al., 1996) by providing additional structural constraints, and

in some cases they offer the potential of ab initio phasing

(Lawrence, 1991; Rossmann, 1995). Application of these

constraints requires knowledge of the region occupied by the

molecule, the so-called molecular envelope. However, the

molecular envelope is usually determined from preliminary

electron density functions, calculated using experimentally

derived phases, and so ab initio envelope determination

presents a catch-22 situation. Solution scattering (Svergun &

Stuhrmann, 1991; Chacon et al., 2000; Svergun et al., 2001;

Hao, 2006; Svergun, 2007; Putnam et al., 2007; Stuhrmann,

2008) or electron microscopy (Dodson, 2001; Hao, 2006;

Navaza, 2008; Xiong, 2008) can be used to derive molecular

envelopes; however, it would be useful if the molecular

envelope could be determined directly from the structure-

factor amplitudes of the crystal. One approach that potentially

allows this is the method of contrast variation, which can be

used to obtain estimates of the amplitudes that would be

diffracted by the molecular envelope itself. The problem then

reduces to phasing these derived amplitudes. In this paper we

present a new approach for phasing of envelope structure-

factor amplitudes.

Solvent contrast variation involves the collection and

analysis of diffraction data from macromolecular crystals

where the scattering contribution from the bulk solvent has

been systematically varied. The potential uses of such infor-

mation have long been known. By manipulating the electron

density of the solvent, Bragg & Perutz (1952) were able to

observe systematic changes in the intensity of the low-order

diffraction data collected from haemoglobin crystals and infer

the approximate dimensions of the molecule. A number of

contrast variation experiments have subsequently been used

to estimate molecular envelopes, usually by changing the salt

or the salt concentration (Carter et al., 1990). Another way of

modulating diffraction from the bulk solvent is to disperse

anomalous scatterers in it and make diffraction measurements

about an absorption edge (Bricogne, 1993; Fourme et al., 1995;

Shepard et al., 2000). An advantage of the latter approach is

that isomorphism is conserved. Whichever method is used, the

result, ideally, is the extraction of structure-factor amplitudes

due to the molecular envelope alone, i.e. a function equal to

unity within the envelope and zero outside. This function is

sometimes referred to as the indicator function of the

envelope, although we will refer to it here simply as the

envelope.

Once estimates of the structure-factor amplitudes have

been obtained, the problem is to phase these amplitudes to

obtain the molecular envelope itself. As pointed out by

Shepard et al. (2000), this phasing problem has a quite

different character to the usual phase problems in crystal-

lography. The corresponding electron density is not atomistic,

it does not have the detailed structure of a low-resolution

protein electron density, the electron density is far from being

randomly distributed in the unit cell but is a rather compact

binary function, and the number of (low-resolution) structure-

factor amplitudes that are used as data is quite small.

However, both Carter et al. (1990) and Fourme et al. (1995)

argued that the problem has some similarities to small-

molecule structure determination and used methods based on

direct methods to phase the envelope diffraction amplitudes.

Carter et al. (1990) used solvent contrast variation data and



direct methods phasing to determine an 18 Å-resolution

envelope of tryptophanyl-tRNA synthase from Bacillus

stearothermophilus. Results were promising; however, these

authors had the advantage of sixfold noncrystallographic

symmetry at low resolution, and the method required

considerable manual intervention. Fourme et al. (1995)

showed that measurable anomalous scattering solvent contrast

measurements could be made for two proteins, although there

were experimental difficulties and the data were not used for

envelope determination. They noted that the potential of the

method for complex structures depends critically on the initial

phase determination of the envelope amplitudes by direct

methods, which has not yet been convincingly demonstrated.

Shepard et al. (2000) took a different approach; they repre-

sented the envelope as a surface in spherical polar coordinates

and parameterized the surface using spherical harmonics and

a small number of coefficients. The coefficients are determined

from the envelope structure-factor amplitudes using a

nonlinear least-squares minimization procedure. Encouraging

results were obtained using simulated data, although the

authors noted that their method cannot represent general

envelopes (since the actual surface function may be multi-

valued), and there were difficulties with scaling the data and

robustness of the gradient-based minimization procedure.

Neutron diffraction has also been explored for envelope

determination by using differing H/D contents to vary the

solvent scattering. Badger (1996) used solvent contrast

neutron diffraction data from cubic insulin crystals, and

application of a search procedure with a cost function that

favours a binary histogram, to estimate the molecular

envelope. However, the method is suitable only for the centric

reflections and the search procedure is not feasible for a large

data set.

Here we present an alternative method for determining

molecular envelopes from the structure-factor amplitudes

derived from solvent contrast variation. Our method is based

on a recent study of properties of, and reconstruction algo-

rithms for, the generic problem of reconstructing a compact,

binary image from limited Fourier amplitude data (Lo &

Millane, 2008). We showed there that the characteristics of

molecular envelopes should allow a unique reconstruction

from the structure-factor amplitudes alone. The basis of the

reconstruction method is a set of constraints that embody the

salient properties of molecular envelopes and a global opti-

mization procedure based on the method of alternating

projections. In the next section we briefly review contrast

variation methods for deriving molecular envelope structure-

factor amplitudes. In x3 we describe our algorithm and in x4

results of simulations for two protein crystals are presented.

Concluding remarks are made in x5.

2. Envelope structure-factor amplitudes from solvent
contrast variation data

The use of either solvents with different electron densities or

solvents containing anomalous scatterers to derive the

structure-factor amplitudes of the molecular envelope has

been described previously (Carter et al., 1990; Fourme et al.,

1995). The key elements of these calculations are briefly

outlined here for the benefit of the reader.

Consider a unit cell with a protein molecule surrounded by

solvent with electron density �s. Let the envelope function, as

defined in x1, be denoted gðyÞ, where y is the position in real

space. The electron density in the unit cell, f ðyÞ, can then be

written as

f ðyÞ ¼ �ðyÞ þ �s½1� gðyÞ�; ð1Þ

where �ðyÞ is the electron density of the protein alone. The

structure factor for h 6¼ 0 is then

Fh ¼ FP
h � �sGh; h 6¼ 0; ð2Þ

where FP
h is the structure factor of the protein and Gh is the

structure factor of the envelope function. The equation for

h ¼ 0 is somewhat different but is of little significance since F0

cannot be measured. Straightforward manipulation of equa-

tion (2) shows that the measured amplitudes are given by

jFhj
2
¼ jFP

h j
2
þ �2

s jGhj
2
� 2�sRe½FP

h G�h�; h 6¼ 0; ð3Þ

where Re½�� denotes the real part and � denotes complex

conjugation. Equation (3) is linear in the three unknowns

jFP
h j

2, jGhj
2 and Re½FP

h G�h�, so if data are collected for three

different solvent electron densities �s, then the three corre-

sponding equations can be solved for these unknowns. In

particular, the structure-factor amplitudes of the molecular

envelope, jGhj, can be obtained. In practice the three data sets

need to be put onto a common scale. In addition, some means

of making the boundary between protein and solvent less step-

like must be introduced. However, the description above

shows the essence of the technique.

An alternative means of manipulating the scattering from

the bulk solvent is to incorporate anomalous scatterers in the

solvent and make measurements at different wavelengths.

Advantages of this approach are that only a single crystal is

required and there is no lack of isomorphism. The structure

factors at wavelength � are then given by

Fhð�Þ ¼ FP
h � ½�s þ aKð�Þ�Gh; h 6¼ 0; ð4Þ

where Kð�Þ is the known, complex, wavelength-dependent

scattering by the anomalous scatterers and a is a constant

related to the concentration of anomalous scatterers in the

solvent. Manipulation of equation (4) shows that the

measured amplitudes are given by

jFhð�Þj
2
¼ jFP

h j
2
þ j�s þ aKð�Þj2jGhj

2

� 2Re½FP
h f�s þ aKð�Þg�G�h�; h 6¼ 0: ð5Þ

Hence, similarly to the previous case, measurement of jFhð�Þj
for different wavelengths (but fixed �s) gives a system of linear

equations that can be solved for jGhj. Since Kð�Þ is complex,

and so Fhð�Þ 6¼ F�hð�Þ, two equations are obtained for each

wavelength, and data for two wavelengths are in principal

sufficient to solve for jGhj. In practice, the methods of multiple

anomalous dispersion (Hendrickson, 1991) could be used to

obtain a stable solution of equation (5).
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3. Algorithm

The problem at hand is to reconstruct the molecular envelope

gðyÞ from its structure-factor amplitudes jGhj. The molecular

envelope is a low-resolution object and so only the low-

resolution amplitudes, say less than 7–10 Å resolution, are

pertinent. However, an important practical consideration is

that the amplitude data will be available only down to a

minimum resolution of, say, 50 Å. The lower resolution limit

presents a particular difficulty in this problem. We therefore

consider amplitude data jGhj between resolutions dmin and

dmax. We assume that such data jGhj have been obtained,

subject to the usual errors, from some form of solvent contrast

variation experiment as described above.

The problem of reconstructing gðyÞ corresponds to a usual

macromolecular crystallographic phase problem, although the

characteristics of gðyÞ are different from those of a protein

electron density. The envelope is a binary function, or image,

and it forms a single, compact, connected object. We have

studied this generic phase problem and shown that the binary

constraint is sufficiently restrictive to uniquely define the

envelope if all the low-resolution amplitudes are known, even

in the presence of noise (Lo & Millane, 2008). Compactness

and connectivity constraints are expected to compensate for

the absence of some of the very low resolution amplitude data.

Reconstruction of such an image should therefore be possible

and we proposed an iterative projection algorithm to effect

the reconstruction (Lo & Millane, 2008). Here we study the

application of this algorithm to the recovery of molecular

envelopes.

The information available to effect the reconstruction

consists of the amplitudes jGhj and several properties of the

envelope, such that it is binary and that it forms a connected

domain. The approach we take is to treat the problem as a

constraint satisfaction problem and use the method of iterated

projections (Elser, 2003; Millane, 2003). In this approach, an

algorithm is used to find an image (in this case the envelope)

that satisfies the available information, which is expressed as

two sets of constraints. In the case at hand, the two constraints

are the structure-factor amplitude data and the properties

(binary, compactness, connectedness) of the envelope. The

algorithm is iterative, and at each iteration a new ‘iterate’ is

formed from the previous iterate by a combination of

‘projections’. A projection consists of making the minimal

change (in the squared deviation sense) to the iterate, such

that it conforms to one of the constraints. For example,

projecting an electron-density iterate onto the structure-factor

amplitude constraint consists of calculating the structure

factors, replacing the amplitudes by the measured amplitudes

and then calculating a new electron density. The relationship

between projections and many of the steps used in conven-

tional electron-density modification is obvious. We note that,

depending on the particular algorithm, an iterate is not

necessarily an estimate of the solution, but that an estimate

can be obtained by projecting an iterate onto any of the

constraints. A variety of different iterative projection algo-

rithms exist, which vary in the way that the projections are

combined at each iteration (Millane, 2003; Marchesini, 2007).

Here we use the ‘difference map’ (DM) algorithm (Elser,

2003), since this algorithm accommodates general constraints

and is effective in avoiding stalling at near-solutions. Note that

this is unrelated to the usual ‘difference Fourier map’ in

crystallography.

It is convenient to formulate iterative projection

algorithms as operations on points x ¼ ðx1; x2; . . . ; xNÞ in an

N-dimensional abstract vector space RN. A point x in this

vector space represents a particular image (envelope) in the

discretized unit cell, where N is the number of grid points in

the unit cell, and the value of a component of x, xj, is the value

of the image at the corresponding grid point yj, i.e. xj ¼ gðyjÞ.

The projection of x onto a constraint A is denoted PA x and is

defined by

PA x ¼ argmin
x02A
kx0 � xk; ð6Þ

where A is a subset of RN containing all images that satisfy the

constraint, k � k is the Euclidean norm and argminx ½�ðxÞ�
denotes the value of x that minimizes �ðxÞ. We denote the real-

space constraint set by A and the structure-factor amplitude

data constraint set by B. With this formalism, one iteration of

the DM algorithm is defined by (Elser, 2003)

xnþ1 ¼ xn þ �fPA½ð1þ 1=�ÞPBx� ð1=�Þx�

� PB½ð1� 1=�ÞPAxþ ð1=�Þx�g; ð7Þ

where � is a constant such that�1 � � � 1 and xn denotes the

nth iterate. We note that equation (7) is the most commonly

used form of the general DM algorithm (Elser, 2003). Note

also that interchanging PA and PB is equivalent to changing

the sign of �. The algorithm is started with a random (or

otherwise) initial image x0 and convergence is monitored as

the distance of the iterate from the constraints.

As noted previously (Elser, 2003; Lo & Millane, 2008), the

iterate x itself of the DM algorithm is not an estimate of the

solution. An estimate of the solution can be obtained by

projecting the iterate onto one of the constraints. Here we use

an estimate of the envelope, denoted ĝgn, from an iterate xn

computed as

ĝgn ¼ PA½ð1þ 1=�ÞPBxn � ð1=�Þxn�: ð8Þ

Since this quantity is calculated at each iteration anyway, no

additional computational cost is incurred. We note that, for

� ¼ 1, this corresponds to computing a ‘2Fo � Fc’ map.

The Fourier amplitude projection PB is given by

PB x ¼ F�1½ ~PPBF½x��; ð9Þ

where F½�� and F�1½�� denote the Fourier and inverse Fourier

transforms, respectively, and ~PPB is the Fourier amplitude

projection in Fourier space given by

~PPBXh ¼

�
sMh expfi’ðXhÞg if h 2 Q

Xh if h =2 Q;
ð10Þ

where i ¼ ð�1Þ1=2, fXhg ¼ F½x�, ’ð�Þ denotes the phase, Mh

denotes the measured structure-factor amplitudes of the

envelope derived from the measured data, s is a scale factor
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and Q denotes the set of reciprocal lattice points where the

data are measured (i.e. between the resolutions dmin and dmax).

Simulations showed that the method used to estimate the scale

factor is important and this is discussed further in x4.

The projection PA corresponds to adjusting an iterate such

that it conforms to our knowledge of molecular envelopes. We

therefore adjust an iterate such that (1) it is a binary function,

(2) it has the correct solvent-excluded volume (this can

generally be estimated from the protein molecular weight, the

space group and the unit-cell dimensions) and (3) it forms a

single connected domain with no ‘holes’. The no-holes

constraint is not restrictive and can be relaxed if required. An

exact projection onto these constraints is not feasible, and the

approximate projection PA that we use is described in detail

by Lo & Millane (2008) and consists of the following steps.

The first step is projection onto the set of binary images with

the correct solvent-excluded volume. The fractional solvent-

excluded volume is denoted f . This projection is denoted PBF ,

and involves setting the fN largest values of x to 1 and the

remainder 0, i.e.

PBF xj ¼

�
0 if xj =2 Sð f Þ

1 if xj 2 Sð f Þ;
ð11Þ

where Sð f Þ is the set of the largest fN values of x.

In the second step, connected binary regions, or objects, that

are larger than a threshold size, denoted l, are retained and the

remaining objects deleted. This operation is denoted PC and is

defined by

PC xj ¼

�
1 if j 2 LðlÞ

0 if j =2 LðlÞ;
ð12Þ

where LðlÞ denotes the set of grid points that belong to objects

of size (number of grid points) greater than l. The threshold l

is given by l ¼ �fN, with the constant � ’ 0:1 (Lo & Millane,

2008). The effect of the operation PC is to favour a single

object as the iterations proceed.

In the third step, solvent volumes larger than a threshold

size are retained and smaller ‘holes’ removed. This operation

is denoted PSC and is identical to the previous step applied to

the negative of the image, so that

PSC x ¼ 1� PCð1� xÞ: ð13Þ

The full real-space projection, denoted PA, consists of

concatenation of the above three projections, i.e.

PA x ¼ PSCPCPBF x: ð14Þ

A block diagram of the algorithm used is shown in Fig. 1. If

the solvent-excluded volume f is close to 0.5, the algorithm

may converge to the negative solution (solvent and protein

regions interchanged). This solution can be avoided by a small

change to the algorithm, which involves checking the negative

solution as described by Lo & Millane (2008).

4. Simulations

The algorithm was tested by simulation on two molecular

envelopes derived from solved protein structures taken from

the Protein Data Bank. The two proteins are the alkaline

protease from Pseudomonas aeruginosa (Miyatake et al.,

1995), and human galectin-7 (Leonidas et al., 1998). For

convenience, we refer to these two proteins as A and B,

respectively. Both structures have space group P212121 (the

asymmetric unit is 1/4 of the unit cell). The unit-cell dimen-

sions, sampling grid size and grid spacings are listed in Table 1.

The solvent-excluded volumes for the two proteins are quite

different, with f ¼ 0:35 for protein A and f ¼ 0:57 for protein

B.

Molecular envelopes were determined from each atomic

model using standard procedures (Wang, 1985; Leslie, 1987),

as implemented in the program DM (Cowtan, 1994). The

averaging radius for envelope generation was 8 Å. The

Fourier amplitudes of the envelope were calculated by the

discrete Fourier transform, a scale factor was applied, 5%

r.m.s. Gaussian noise was added, and the amplitudes within a

resolution shell between 40 and 7 Å were used as data for

image reconstruction. The algorithm was started with a

random binary image. Although the algorithm does not break

any crystallographic symmetry present, the P212121 crystal-

lographic symmetry is maintained by averaging the image over

the four asymmetric units at the end of each iteration to

prevent rounding errors from accumulating.

In practice, the scale factor s [equation (10)] needs to be

determined for application of the method. In some cases the
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Figure 1
Block diagram of the algorithm.

Table 1
Parameters of the proteins A and B.

Protein Cell dimensions (Å)
Number of
grid points

Grid spacing
(Å) f

A 77:2� 176:7� 51:1 18� 40� 12 4.3 0.35
B 54:2� 65:3� 73:6 18� 20� 24 3.1 0.57



scale factor may be estimated from crystal packing data and

the low-resolution diffraction amplitudes, but the problem is

not well determined if the available low-resolution diffraction

data are limited. It was found that determination of s was

crucial and not straightforward. Our solution to this problem

is described here. An obvious approach is, starting with an

estimate, to refine the scale factor as part of the iterative

reconstruction procedure by scaling the mean estimated

structure-factor amplitudes from the envelope to the mean of

the measured amplitudes. The difficulty, however, as

mentioned above, is that the low-resolution amplitudes, which

have the greatest effect on the scale factor, are not available.

Although this approach was successful in some cases, it was

not successful in general. This is because, since we are solving

the ab initio problem, the early estimates of the envelope are

highly incorrect, which can lead to a poor initial estimate of

the scale factor. This incorrect scale factor may trap the

iterations into a local minimum from which it is difficult to

escape. The following method of obtaining a good estimate of

the scale factor was found to be effective.

The asymmetric unit is chosen to

minimize its aspect ratio, i.e. to be as

close to cubic as possible, and an ellip-

soid is placed at the centre of each

asymmetric unit. The ratio of the semi-

axes of the ellipsoid is the same as the

ratio of the axes of the asymmetric unit,

and the size of the ellipsoid is chosen

such that the total volume of the ellip-

soids is equal to the known volume of

the envelope. For crystals of low

solvent content the ellipsoids may be

truncated by the faces of the asym-

metric unit, and the size of the ellipsoid

would then need to be increased. This

method was found to be suitable in all

cases we studied. For the orthorhombic

case P212121 considered here, if the cell

dimensions satisfy a> b> c, there are

four asymmetric units of dimensions

a=2� b=2� c. The scale factor is then

estimated as

s ¼
P

h2Q0
jWhj

2
�P

h2Q0
M2

h; ð15Þ

where jWhj are the structure-factor

amplitudes of the ellipsoid model and

Q0 is an appropriate resolution range. It

was found that a resolution range of 25–7 Å was suitable.

Simulations showed that this method generally gave scale

factors within 5% of the correct value. However, even starting

with this value and refining the scale factor as described above

sometimes led to divergence. Therefore, it was found to be

most satisfactory to lock the scale factor at the estimated

value. A locked scale factor with an error of up to 5% did not

significantly affect convergence or the quality of the solution.

Since the estimate of the envelope ĝgn [equation (8)] satisfies

the real-space constraints, convergence of the algorithm was

monitored by calculating the quadratic R factor as

R00n ¼
P
h2Q

ðjĜGh;nj � sMhÞ
2
�P

h2Q

s2M2
h; ð16Þ

where jĜGh;nj are the structure-factor amplitudes of ĝgn. The

error in the envelope given by

Tn ¼ jjg� ĝgnjj
2=jjgjj2; ð17Þ

where g is the true envelope, was also calculated to monitor

the accuracy of the solution. The proportion of grid points in

error is then equal to fTn. Clearly, this metric can only be

calculated for simulations where the original envelope is

known. It was found that Tn < 0:2 corresponds to a good

estimate of the true envelope.

In general, as the algorithm proceeds the iterates wander

around the solution space before finding a solution and closing

in with a distinctive fall in the error metric (Lo & Millane,

2008). Because of the noise, there may be no solution that

exactly satisfies all the constraints, and the nature of the DM
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Table 2
Results for the two protein envelopes.

Protein
Resolution
range (Å) Runs

Converged
runs

Correct
solutions

Incorrect
solutions

A 40–7 5 2 2 0
A 50–7 5 5 5 0
B 40–7 5 5 1 4
B 50–7 5 5 5 0

Figure 2
(a) The true envelope, (b) the ellipsoid model, (c) the final solution and (d ) R00n versus iteration, for
protein A. Symmetry-equivalent regions in the unit cell are represented by different colours to aid
interpretation.



algorithm is such that the iterates will then move away from

the near solution. Therefore, a large number of iterations are

used, and the solution with the minimum error metric R00n is

chosen. In practice, it is best to run the algorithm a few times

with different starting envelopes and select the solution with

the best agreement index R00n.

The DM algorithm was run with � ¼ 0:9 for 1:5� 105

iterations with 5% noise on the data for envelopes A and B.

Values 0:7< j�j< 1:0 worked well; however, positive values of

� gave slightly faster convergence than negative values. The

scale factor was estimated as described above. Five runs were

made using different random starting envelopes for each

resolution range. The results are summarized in Table 2. The

table shows the resolution range used, the total number of

runs, the number of converged runs (R00n < 0:1), the number

of successful converged runs (Tn < 0:2) and the number of

incorrect solutions obtained.

For protein A with data in the range 40–7 Å, two of the five

runs converged. For all of the converged runs, an accurate

reconstruction of the envelopes was obtained, with Tn in the

range 0.02–0.05, i.e. no incorrect solutions were obtained. If

the lower resolution limit is reduced to 50 Å, all runs

converged to the correct solution. The results for one of the

converged runs for which R00n ¼ 0:056 and Tn ¼ 0:033 are

shown in Fig. 2. The plot of R00n versus iteration shows a sharp

drop at about iteration 2500, followed by erratic movement of

the iterate around the correct solution. The true envelope, the

ellipsoid model and the reconstructed envelope are also

shown in the figure. The reconstructed envelope is seen to be a

good estimate of the true envelope. The algorithm has

therefore been successful in this case.

For protein B with data in the range 40–7 Å, all five of the

runs converged. Of these, one gave the correct solution

(Tn < 0:2) and four gave incorrect solutions (Tn > 0:2).

Therefore, although convergence could be obtained, the

existence of multiple solutions that replicate the data indicates

that, in this case, the data are insufficient to define a unique

solution. Extending the lower resolution limit down to 50 Å,

all five runs converged, and all gave the correct solution

(Tn < 0:2). In this case, therefore, more low-resolution

diffraction data are needed to uniquely

define the envelope. The results for one

of the converged runs for which

R00n ¼ 0:018 and Tn ¼ 0:09 are shown in

Fig. 3. In this case the error R00n drops

quite rapidly and the algorithm is stable

at the solution. The true envelope, the

ellipsoid model and the reconstructed

envelope are also shown in the figure.

Although Tn ¼ 0:09, for the recon-

structed envelope, the reconstruction is

quite accurate with only 5% of the grid

points misclassified.

5. Conclusions

The structure-factor amplitudes of a

molecular envelope obtained from

solvent contrast variation experiments,

when coupled with a priori information

on envelopes, can uniquely define the

envelope. Incorporation of connectivity

and compactness constraints into an

iterative projection algorithm gives an

effective way of reconstructing envel-

opes from such data. Simulations with

real envelopes and realistic levels of

noise and missing data indicate that this

algorithm may be practical. Advantages

of the algorithm are that it is automatic

and requires no additional information.

The solution to the problem is sensitive

to missing low-resolution data and to an

accurate determination of the scale

factor.
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Figure 3
(a) The true envelope, (b) the ellipsoid model, (c) the final solution and (d ) R00n versus iteration, for
protein B.
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